Chào mừng quý vị đến với website của Trường THCS Cao Thành
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tài liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
Ôn tập hè toán 7 Lên 8

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Vân Nam
Ngày gửi: 08h:44' 10-08-2018
Dung lượng: 211.5 KB
Số lượt tải: 0
Nguồn:
Người gửi: Nguyễn Vân Nam
Ngày gửi: 08h:44' 10-08-2018
Dung lượng: 211.5 KB
Số lượt tải: 0
Số lượt thích:
0 người
ÔN TẬP TOÁN 7 LÊN 8
ĐẠI SỐ
Số hữu tỉ.
Số hữu tỉ là số viết được dưới dạng a/b với a,b Z, b 0.
Tập hợp các sỗ hữu tr được kí hiệu là Q.
Quy tắc chuyển vế.
- Khi chuyển vế một số hàng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó.
Với mọi x, y, z Q : x + y = z x = z - y.
Tỷ lệ thức
- Tỷ lệ thức là đẳng thức của hai tỉ số = .
- Nếu = thì ad = bc.
- Nếu ad = bc và a, b, c khác 0 thì ta có tỷ lệ thức.
= , = , = , = .
4. Tính chất của dãy tỉ số bằng nhau.
= = =
- Từ dãy tỷ số bằng nhau = = ta suy ra.
= = = =
Đại lượng tỷ lệ thuận.
- Nếu đại lượng y liên hệ với đại lượng x theo công thức : y = kx ( với k là hằng số khác 0) thì ta nói y tỉ lệ thuận với x theo hệ số k.
- Nếu hai đại lượng tỉ lệ thuận với nhau thì :
+ Tỉ số giữ hai giá trị của chúng không thay đổi.
+ Tỉ số hai giá trị của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia.
Đại lượng tỉ lệ nghịch.
- Nếu đại lượng y liên hệ với đại lượng x theo công thức y = hay xy = a (a là một hằng số khác 0) thì ta nói y tỉ lệ nghịch với x theo hệ số tỉ lệ a.
- Nếu hai đại lương tỉ lệ nghịch với nhau thì :
+ Tích hai giá trị tương ứng cùa chúng luôn không đổi (bằng hệ số tỉ lệ).
+ Tỉ số giá trị bất kì của đại lượng này bằng nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia.
Đơn thức
- Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.
- Bậc của đơn thức có hệ số khác 0 là tổng số mũ của tất cả các biến có trong đơn thức.
- Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.
- Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
Đa thức
- Đa thức là một tổng của những đơn thức. Mỗi đơn thức trong tổng gọi là một hạng tử của đa thức đó.
- Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó.
Nghiệm của đa thức.
- Nếu tại x = a, đa thức P(x) có giá trị bằng 0 thì ta nói a (hoặc x = a) là một nghiệm của đa thức đó.
B. HÌNH HỌC
Hai góc đối đỉnh.
- Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
a
O
b
- Tính chất : Hai góc đối đỉnh thì bằng nhau.
Hai đường thẳng vuông góc.
- Hai đường thẳng xx’, yy’ cắt nhau và trong các góc tạo thành có một góc vuông được gọi là hai đường thẳng vuông góc và kí hiệu là xx’ yy’.
x
y y’
x’
- Tính chất : Có một và chỉ một đường thẳng a’ đi qua điểm O và vuông góc với đường thẳng a cho trước.
Đường trung trực của đoạn thẳng.
- Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng ấy.
d
A O B
4. Các góc tạo bởi một đường thẳng cắt hai đường thẳng.
- Nếu đường thẳng c cắt hai đường thẳng a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì : a) Hai góc so le trong còn lại bằng nhau.
b) Hai góc đồng vị bằng nhau. 5. Hai đường thẳng song song.
- Hai đường thẳng song song là hai đường thẳng không có điểm chung.
- Hai đường thẳng phân biệt thì cắt nhau hoặc song song.
- Tính chất : Nếu đường thẳng c cắt hai đường thẳng a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau (hoặc một cặp góc đồng vị bằng nhau) thì a và b song song với nhau
ĐẠI SỐ
Số hữu tỉ.
Số hữu tỉ là số viết được dưới dạng a/b với a,b Z, b 0.
Tập hợp các sỗ hữu tr được kí hiệu là Q.
Quy tắc chuyển vế.
- Khi chuyển vế một số hàng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó.
Với mọi x, y, z Q : x + y = z x = z - y.
Tỷ lệ thức
- Tỷ lệ thức là đẳng thức của hai tỉ số = .
- Nếu = thì ad = bc.
- Nếu ad = bc và a, b, c khác 0 thì ta có tỷ lệ thức.
= , = , = , = .
4. Tính chất của dãy tỉ số bằng nhau.
= = =
- Từ dãy tỷ số bằng nhau = = ta suy ra.
= = = =
Đại lượng tỷ lệ thuận.
- Nếu đại lượng y liên hệ với đại lượng x theo công thức : y = kx ( với k là hằng số khác 0) thì ta nói y tỉ lệ thuận với x theo hệ số k.
- Nếu hai đại lượng tỉ lệ thuận với nhau thì :
+ Tỉ số giữ hai giá trị của chúng không thay đổi.
+ Tỉ số hai giá trị của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia.
Đại lượng tỉ lệ nghịch.
- Nếu đại lượng y liên hệ với đại lượng x theo công thức y = hay xy = a (a là một hằng số khác 0) thì ta nói y tỉ lệ nghịch với x theo hệ số tỉ lệ a.
- Nếu hai đại lương tỉ lệ nghịch với nhau thì :
+ Tích hai giá trị tương ứng cùa chúng luôn không đổi (bằng hệ số tỉ lệ).
+ Tỉ số giá trị bất kì của đại lượng này bằng nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia.
Đơn thức
- Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.
- Bậc của đơn thức có hệ số khác 0 là tổng số mũ của tất cả các biến có trong đơn thức.
- Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.
- Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
Đa thức
- Đa thức là một tổng của những đơn thức. Mỗi đơn thức trong tổng gọi là một hạng tử của đa thức đó.
- Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó.
Nghiệm của đa thức.
- Nếu tại x = a, đa thức P(x) có giá trị bằng 0 thì ta nói a (hoặc x = a) là một nghiệm của đa thức đó.
B. HÌNH HỌC
Hai góc đối đỉnh.
- Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
a
O
b
- Tính chất : Hai góc đối đỉnh thì bằng nhau.
Hai đường thẳng vuông góc.
- Hai đường thẳng xx’, yy’ cắt nhau và trong các góc tạo thành có một góc vuông được gọi là hai đường thẳng vuông góc và kí hiệu là xx’ yy’.
x
y y’
x’
- Tính chất : Có một và chỉ một đường thẳng a’ đi qua điểm O và vuông góc với đường thẳng a cho trước.
Đường trung trực của đoạn thẳng.
- Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng ấy.
d
A O B
4. Các góc tạo bởi một đường thẳng cắt hai đường thẳng.
- Nếu đường thẳng c cắt hai đường thẳng a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì : a) Hai góc so le trong còn lại bằng nhau.
b) Hai góc đồng vị bằng nhau. 5. Hai đường thẳng song song.
- Hai đường thẳng song song là hai đường thẳng không có điểm chung.
- Hai đường thẳng phân biệt thì cắt nhau hoặc song song.
- Tính chất : Nếu đường thẳng c cắt hai đường thẳng a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau (hoặc một cặp góc đồng vị bằng nhau) thì a và b song song với nhau
 











Các ý kiến mới nhất